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Abstract

This work addresses itself to the study of some potimal properties of Empirical
Bayes estimators of the vector value parameters of the distributions. The goal is to provide
some tools similar to those found for scalar parmeters. Relevant notions are defined and
conditions of optimality for such estimators are stated. Utilizing the relations between -
different modes of convergence, it has been established that componentwise asymptotic

optimality 1is sufficient for vector asymptotic optimality. Thus, providing an ecasier way

to check for asymptotic optimality.
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1. Introduction Any decision function dg which minimizes

- . 1. 1) is called a B le relat | -
With a view to future use, we shall extend (1. 1) 15 ca ayes rule relative to G. When G 1s

. known, the Bayes risk of '
some aspects of the Empirical Bayes (EB) approach nown, the Bayes risk of dg is

for univariate problems. to providt s'omcl tools- for W (G) =W (dG : 'G) m infy W (d, G) (1. 2)

dealing with multivariate problem . These results : .
8 P | There remains the question of what to do when

can then be applied to some s ecific roblems in our o . : :
PP P P G 1s not known. It 1s assumed that G exists. Thus,

later works. One apphcatmn is seen in Mohammad -
zadeh (1986).

The EB approach tao statistical decision

W(d G) is an appropriate criterion for the performance
of ‘any d.

The standard EB acsumpuon is that there are

roblems is applicable when we encounter the game .. .
P pplica R HEE ' mdependent palrs of random Vectors ( A ,X) with

decision problem in a sequence repeatedly and mdep -

outcomes
endently with a fixed but unknown prior d'stribution:-
for the parameter .. we do not expect all decision (A, xl) g (Any X505 (An+p= A, Xp+; =X)
problems in practice to be embedded in such asequence. . .. - .~ - L (1. 3)

However, when they are, the EB approach otlers certamn The values of /\ £ N {l n41),

advantages over any- approach which. ignores the fact ,
5 Y appra e ig always remain unknown. At the (n-- l) st stage, a

that the parameter is itself a random variable. This
approach also has advantages over approaches which

x;,1e N ={I, ..., n}, which can be used to cons -
assume a personal prior not changing with experience,

Robbins (1964). S e e e I |
The statistical demsmn problem Wlth Wthh dn (X) = d(x1,..., X, X) = {.. .,dnj (x),...}

truct a decision function about A of the form

we shall be concerned is of the following character. (1. 4)
Let R™ denote the m - dimensional Euclidean space.  The function (1. 4) which maps &@ into 4 is
Suppose we have : oo oo+ called an EB.rule. In the-estimatien problem,
e _ _ .
(1) a parameter space QCR™, im;lthehrule is an estimator. Then, the EB estimator,

being a function of the «past data», has a Bayes
(2) a non - observable random vector A on@ . = ©° T ¢ (past At Y

. g e . risk
with a generic. distribution function (d. .,

£y G
(3) an observable random vector X on a space &2
with conditionat . £. F (. |- A)s A eQ, L[d (x), A ]dF (xl A) dG(A} (1. 5)

(4) an action space .4 with elements A, and ~ where E 1S the expectauon w1th respect to the joint

(5) a loss function L (A, A) >0, Ae 4. A €. distribution of {x;,1¢ N}. By definition,

The problem is to choose a decision functiond: 92— .4

such that upon observing x we shall take the action E.[W(dy, G)|> W(G) (1. 6)
d (x) and incur the loss L (d(x)y A )- The Bayes risk A decision is called asymptotically optimal
relative to G 1s defined as (a. 0.) relative to G, if

W(d,G)=/a [eeLldx), AJdF(x[A)dAG(A)  ih B [W(d,,G)]=W(G)

(1. 1) N —> 00

decision is to be made about A . we have the «past data»
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Therefore, it is rcasonable to believe: that a. o. EB -
estimators will share optimal properies of the Bayes

estimators, if there is enough past information.

We can represent a kX [ matrix ag a vector of

kl components. Thig representation makes p0331ble
to consider the decision problems for matrices in the
framework of the above formulation. In fact, the above
formulation is suitable for three levels of complication.
When k= [= l, we have one parameter K>_1_,—

give a k - vector of parameters; and £, [ > 1 lead to a

k %< [ matrix of parameters.

2. Review of the univariate case

In thig sectlon we shall rewew the relevant
results {rom the univariate theory of the EB approach
to statistical decision problem. The problem of special
interest to us is the estimation of a parameter fof&a

probability distribution.

The idea of EB estimation began with Robbmns
(1955). He derived a. o. estimates for parameters of
certain. common univariate distributions. Neyman
(1362) called it a breakthrough in the theory of statis -
tical decision making. To avoid repeating ourseivés,'

consider the equations (1. 1) - (1. 3) written for scalars

d, X, and A ; denote them by W (d, G), W(G), and

(A, x;5)) i e N, respectively. Accordingly, we consider

(1. 4) when we have a scalar d,, (x). Since x is a reali-

zation of X = X_ +p 1t will be considered fixed in
the spirit of Bayesian theory. Thusg, in the sequel the
expectation and limit operators refer to the joint
distribution of {X;, ig N} Some desirable properties

have been defined for the estimators.

Def _ipi'tion 2. 1.

An EB estimator, dn(x), 1s gaid to be «consistent
relative to G, if it converges in probablhty to the
respective Bayes estimator, dG x) as the size of «past

data» increases indefinitely. This is denoted by

dn (X)__P,, d(;(X)

Definition 2. 2. (R’Obbinsi-"l?gﬁq‘)

An EB estimator, ¢ (x) is said to be awmptotwal{y

optimal (a. 0.), relative to G, if -

lim E, { W [d.(x), G] }:W(G)

n > 0

where E, is the expectation with respect to the joint
dlstrlbutmn of {X 1€ 1\I} Robbms (1964) gave a
theorem to w=r1fy the a. 0. of an EB estimator. Ruther -
ford and Krutchkoff (1969) noted that for an unbounded
loss functioﬁ, howew}cr, iricluding the popular squared,

errors loss, Robbins’ condition

[a {supaL(d, A)dG (A)}<a

may not hold. To amend, they proposed the weaker

notion of g - a. 0. which means for_ any arbitrary ¢ >

L 3

lim By {W[da(x), G} <W(G) + &

n—> OO

This holds for prior distribution with E { A | 2+XY <«
for some Y > (O . We note that this restriction on the
class of prior distributions for A holds for most priors
wich are useful in practice.

~ To relax the assumptions on the prior, Maritz
(1970) proposed the truncated EB estimators. and
asymptotic optimality in probability a. o. (p).

Deafinition 2. 3.
_ A.n EB estunator d (x) 15 said to be asympto -
tzcally oj)tzmal ¥ probabzlzgy a. 0. (p), relative to G, lf

Wlda(x),G]

W(G), as n— o0

We shall show that a. o. (p) is equivalent to.
a. 0. under some conditions. I %

Let A and B be finite, although possibly large
negative or positive numbers. If A is known to be
bounded in either direction, A and B are taken as

those appropriate bounds.
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Theorem 2. 4. (Maritz, 1970)

. Letd,(x) be an EB estimator of A , truncated
at A and B. Let dg (x) be the corresponding Bayes

estimator of A . Assume

[a[9d?G (x)dF (x| A)dG (A) <
R T

If dn (X) Ld(} (X) as nn— oo for all x g % such

~ that dg (x) g (A, B)I, then d, (x) is a. 0. (p). Squared‘

] '
-

error loss 15 assumed.

We observe that (2. 1) is not a restrictive condition.

If (2. 1) does not hold, then the Bayes estimator has
an imfinite Bayes risk and consideration of an EB esti-
mator does not make sense. We shall see later that
theorem 2. 4 1mn conjunction with an observation,
which we shall make, will prove helptul in establishing
a. 0. of our estimators.

Recently, Deely and Zimmer (1976) returned

to Robbins’ idea of a. 0. and proved it under a weaker

condition.

Theorem 2.5. (Deely and Zimmer, 1976)

Let d, (x) be a consistent EB estimator of A .

Let the loss function be such that,

L{d, (x), A ] P L[dg(x), A], AeQasn—co

-

Suppose there exists a sequence of functions

h, (x, A )mhn (x“,”_, xn; X, /\) such that for alll R

x£Q0, A€ Q
(1) hy (x,A) p h(x,A),

—

(i1) L [d, (x) ,A] < h,(x,A)forn=1,2,....,
and H

(i) imEh,[ (x,A)] = E[limh, (x, A )] < o

Il — QO Il — QO

Then, d, (x) is a. o.

e e O e

The proof is based on a result known as the
extended dominated convergence theorem. We shall
use it to prove multivariate version of Theorem (2. 5)

later. Therefore, 1t is presented here as a lemma.

Lemma 2. 6. (pratt, 1960)

Let (¢y2, g, P) be a probabilityjspace and let {f.}
and {g.} be two sequences of measurable functions
such that

Wt ptf g p g,
—

o
(1)o=1f < g,forn=1,2,,.,

and

(iii) lim f g, dp= /[ gdp < .
In— o0
Then,
lim f f,dp = f{dp <

I1 — o0

In theorem 2. 5, d, (x) p dg (x) will imply
—

L [d, (x), A ]__I:_ L [dg (x), A

if L (.,.) 1s continuous in the first argument. Convergence
in probability with respect to X;, 1 =1, 2,... at each
(X, A ) implies convergence in probability on the
product pace §@; X 9 X ... X 9, X Q.

Now set f =L [d, (x), A] and

g,= h, (X, A ). The result follows from Lemma -
(2. 6. ).

It is observed that W [d, (x), G] is a r. v. depending
on {X;, ¢ N}. In fact, definition (2. 2) states its conver-
gence in the first mean and definition (2. 3.) states
its convergence in probability to W (G). by virtue of
the following lemma, we show that these two definitions

are equivalent.

Lemma 2. 7. (Sertling, 1976) -

Let X  and X be generic random variables.

Suppose Xn P X as n - oo and there is a random
—>



onc (w. p. 1) for all n. If E (|Y |¥) <<oo . then X,

converges to X inr th mean, r>»1.

Theorem 2.8

- Let d, (x) be an EB estimator of A truncated
at A, B. L.et A have a prior d. {f. G such that E ( A 2)

< oo, If the loss function is a squared error loss,

L (d, A )= (d- A )2, then W [d,, (x),G] < oo w. P. L

Proof.

From definition (1. 1)
O =< W[dy(x),Gl=E[da (x) - A<
2 E [da(x) P+E(AY)}

by C.. - incquality [Logve (1977, p; 197) ]. Sinced (x)
belongs to (A, B), ' .

E d,(x) 12<(B—A)? <o W.p.1.
Now, if we define Y in Lemma 2. 7 by

P{Y=2E[da(x) *+2E(A%) =1,
thenE (|Y])<o0.

We shall be dealing with estimation of parameters.

Therefore, it is always true that E ( A 2)<eo. In
this case we see that the conditions of theorem 2. 4

are more easily checked than those of theorem 2. 5.

Whenever we are dealing with squared error loss ,

establishment of a. o. (p)implies. a. o This is a

consequence of lemma 2.7 and theorem 2. 8.

All the previous results concern the large sample
properties of the EB estimators. The distribution of
the EB estimators for small sizes of the past data are
extremely hard to derive. Therefore, their small sample

properties have generally only been sudied by simulation,

Maritz (1970).

3. Extention to multivariate case

The results known for the univariate case can

be extended to include the multivariate case, i. e.,

.- variable 'Y -such that l Xni < ‘ Yl w:th probabil-ity '

vy 25 5 1o Sl ANee Cuels L 31

to include the vector valued quantities. Therefore,
we develop here the appropriate results for the multi-
variate theory.

In the sequel, we shall frequently use the notion
of convergence of a vector to another vector either
n probability or in distribution. Convergcﬁéc in prob -
ability can be defined in different ways, depending
on the metric used. we give the following definjtion
and a necessary and sufficient condtition for convergence

of a vector in terms of convergence of its components.

Definition 3. 1.
" Let X and X ., n=1, 2, ... be s - dimensional
random vectors on a probability space (0, &, p)
The random vector X converges in probability to X if
| for every £ >0
pO:IX,—X|>e) -0, as n—>

h x r 271/2
where || X || m[]es XJ}

L

X, p X.

This 13 denoted by —

Lemma 3. 2.

Let X and {Xm n==1,2,., } be s - dimensional
random vectors on a probability space (9, F , P)

The random vector X p X if and only if

—

an p Xj for allj.

N

Proof.

That this is a necessary condition is obvious.

Let us prove that it 1s also a sufficient condition. For

every g€ >0, let

A = {o: [ij (X =X J”2> )

and

Aj == {0 l an l > [82/3]]/2}’ j& S.

Thus, we need to show AC U Aj. 1f 9¢ Aj, for all j,
1€
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theno g U AjThatis,
(an__xj)2 < &% /s,jeS.

Thus, |
— —— . 2
s (Kag— X=X, — X2
a-n'd 0 g A 'I"I‘ici'efoqré, A C U .A'j. h

Definition 3. 3. -
A vector valued EB estimator d, (x) , 1s said to
be «consistent» relative to G, if it converges in probabuility

to the rcspcctlvc Ba.ycs estimate, dg (x) as the size
of thc «past data» mcreases mdef 1n1tely Thls 18 dcnotcd

d, (x) p do(x),

Definition 3. 4.

A vector valued EB cstiniafor, d, (x) issaid
to be asymptotically optimal (a. o.) relative to G, if

lim E, {W [d, (x),G] } = W (G),

1} — CO

where E_ is the expectation with respect to the joint dist -
ribution of {X; 1¢ N}.
Definition’ 3. 5.

A vector valued EB estimator, d,, (x) is said
to be asymptotically optimal in probability a. o. (p), relative
to G, if

Wd, (x), G] p W(G), asn—rc
where p refers to the joint distribution of {X, 1e N},

Theorem 2. 5 can now be stated for vector valued .

estimataor .

Theorem | 3. 6.

Let d_][1 (x) be a «consistent» EB estimator of
the parameter vector A . Let the loss function be

such that

- L. [dn (x); A ]_E_}L [dG (x)ﬂ A ]

for -each A . Suppose .thcré exists a sequence of functions
h (x A) = h (xl y -
all n and A

(1) ba(x,A) p

#+

(ii) L [dg (=), A] = hy(x,A), forn=1,2,..

5 Xai X, A ) such that for

h(x, A ),

and

iif) i E [, (x) A )]_..-.E {lim h, (x, A

)}<°°
N> 00" n-»oo o

Then, d,, (x) is . o.

Proof.

The proof is similar to that of Theorem 2. 5

where we now et
B -—-L[dn(x),/\]and gn-:::h (x /\)

Thc above thcorcm 18 not chy hclpful m. csta -
blishing a. o. of an EB estimator d, (X) because f 1ndmg
a sequence hn‘(X, A ) may not bc. easy. Thus, u'tillzing
the continuous nature of the squared error loss function,:
we shall relcgatc a.0. of a vector to a. o. of its components.

From now on, we specmhzc L (d A ) to

L{d, A )"'jeS L; (dj, Aj)njas (d ,)2

_ (3 1)
[see De Greoot (1970) ] Conscquently; " '

W@ 0)=

es Wi, G)
' 3.2),

where

W, (d;, G;) = faf@@d--/\)zdF( l/\)

Lemma . 3. 7.

For L (d /\) glven in (3. l) the mlmmumz

Bayes risk for d is achieved by having minimum Bayes':

risk for all dj,J g S.

Proof

From (1 D,
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W(d,G)= Jasf f@@ (dj— A )2dF(xl /\)dG( )

JSS W (d G)

Now, it i§ clear that- if *’d :“has - the minimum Bayes™

rigk . W- (dJ, G ) for all i j €S, then W (d G) achlcvcs

1ts minimum.

" To obtain the Bayes estimate d g relative-to"

G, we-nced to obtain Bayes estimate of dg; relative

to G for éachj..

Theorern 3. 8.

For a squared error loss function, a vector

valued EB estimator, d, (x), is a. o. (p) if and only
ifd,; (x)isa. 0. (p) forallje 8.

Poorf.

From (3. 2), it is obvious that if d; (x) is not

a. 0. (p) tor all j, then there i3 one j such that
Wi [doj (%), Gj1 p W; (Gy).

e

That is,
W [d, (x): Gl = JSS VV [dn,] (x)
Z
_..7“,»-

and d | (x) is not a. o. (P). on the other hand, if

d, j (x) is a. 0. (p) for all j ¢ S, then
W [dsj (%), G;] p W; (Gy).
—
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