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Estimation of a single stationary Markov chain
Dr. M. Meshkani
Department of statistics, Shahid Beheshtr University, Eveen 19832, Tehran. Iran

Abstract

Applications of markov chain models in science and technology are varied
and numerous. Successful applications depend on the accurate knowledge of chain para -
meters, 1. e. initial distribution of states, transition probability matrix, and stationary

distributione.

In this work, we intend to provide good estimates of such parameters. In order
to avoid the vagaries of maximum likelihood estimators which heavily depend on the
frequency counts of consecutive states visited by the chain, as well as the subjective nature
of Bayesian estimators, we propose the empirical Bayes procedure which utilizes the

information contained in the past data to identify the prior distribution of parameters.
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]l. Introduction

Theoretical results for Markov chains with
known transition probability matrix (t. p. m-) are
extensive. However, knowledge of how to estimate
these transition probabilities and their attendant -
propertiesis relatively sparse. Thus,we address ourselves
to the question of the estimation of the t. p. m. of a
finite stationary Markov chain, ¢. f. Romanof (1982)
and Frydman (19384).

We are concerned with the case in which one
observed sequence occurs. The problem of inference

for a single Markov chain which is easily repeated

occurs frequently. For examrle, Lowry (1970) describes

some such situations arising in polymer chemistry and
physics. The assumptions of the empirical Bayes (EB)

procedure as introduced by Robbins (1955) are well

suited to these cases. Therefore, we shall concern ourselves
specifically with the EB estimation of the t. p. m. of our

Markov chain.

The basic underlying probability model is -
presented in Section 2. These results rely heavily on the
Whittle distribution results derived in Whittle (1955).
Then, 1 Section 3, the Bayes estimate of the t. p. m.
1s obtained. If, as is often the case, some or all of the
parameters of the prior distribution are unknown, it is
necessary to find their estimates thus giving rise to the

EB estimates. These procedures are presented in

Section 4.

2. The Probability model

2. 1. Preliminaries.

For the sake of brevity, we shzall not repeat the

well - known results pertaining to single Markov chains.

These are found in, e. g., Feller (1968).
Suppose {93,,te%.} is a Markov chain with

values in the finite state space S= (l,...,s) where
% =(1, «..; T) and ¢ _={0 }UZ.We assume the chain is

simple, 1. e., its order of dependency is 1.

Furthermore, it is ststionary and has an irreducible

t. P. INe. /\ with elements /\jkﬂ‘ j, keS. Let the initial

distribution be 6 with elements 0,185, .
The data are outcomes of (n-}- 1) repeated expe -

riments. In each experiment, we observe and record

the states visited by the chain during a fixed period of
time, T > 1. The outcomes of the first n experiments

will be referred to as the «past datay» - Let a realization

of an experiment be Xp= (x_, X, ++», x1), Where the

subscripts refer to the order in which the observations

were taken and not to their values.

Definition 2. 1.

Let F be an s x s matrix whose(j, k) # element
F ik 18 the number of times that the state k has followed
the state J in a sequence of states visited by a Markov
chain {X,, te z’o}. That is, ij is the number of tymes

the event {Xt-—l =j, X, =k;teq } has occurred. For
each fixed T > 1, F is called the frequency count matrix (1.

c. m.) of the chain up to time T.

Then, the probability of observing a particular

ordered sequence of states 1is

P(Xomu’ }(l xxl, co e, XT:XT)

=P(Xy=u) I l P(Xtmxlxt—lﬂxt—-—l):
tel

=0y H A ija (2. 1)

J, ke S

where 0, €6 with

9={9 BJ >0,jeS, ZBJ:I},
jeS

and /\jk o QS With

Qs:{/\: /\jk =0,3, k=1, ..., S,Z/\jk:—-l,j eS},
k €S

and where Xg=Uu is the initial state of the chain.

It is clear that F is a sufficient statistic for /\ and
8. In the sequel we deal mainly with F.

Before observing the outeome x the integer
Xy and the matrix F are random quantities. The

conditional distribution of F given the initial state
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is u and the t. p. m. is /\, was first derived by Whittle
(1955). This and some other related distributons have
been discussed in detail by Martin (1967).

2. 2. Conditional distributions.

we are interested in the unconditional distrib -
ution of Fgiven X,= u,andinthe posterior distribution
of /\ given F. we shall derive these distributions.
utilizing Martin’s results on conditional distribution.

Let xy=u, xp=V. Then by the definition of F.

. Fi+ —Fyj=8ju—90j, ¢ S,
where

by == Zij: b= Z F e

keS jed

For a given F and a fixed u, the equations (2. 2) uniquely
determine v and vice versa. The restrictiction on F 18

essentially the defining characteristic of the space of

values of F.

Let N be the ste set of positive integers and N
=N U {0}. Forfixed u, ues?, N £ Q, and T g N,we
define the following sets :

D, (ua \£ T /\)"‘""{F

'T, FJ+“F+j$ ju" ij, FJk——Olf/\ ke =—

0: j.’ k & S}: (2' 3)

where 1 denotes, as usual, the columm matirces of one.

O, (u s A, /\) == U D (u’V’T’/\)

vES 2%
o * (T, /\)= U ®, (u, T, AVE (2. 5)
ueS

(Dsl#(T: /\):._—:{F: F g (Ds# (T, /\),Fj;::F_l_j, j, ss},
(2. 6)

and

Do (T, \)=0*(T, \) —0g*(T, /\) (2-7)

For each f. c. m. F. we define F* = (Fy*) -

where, for , k € S

The (v. u) th cofactor of F* will be denoted by F*(yu)e
The conditional p. m. f. of F given u and /\, -

known as the Whittle distribution, is

PO(F|u, T, \) (2. 9)

Fa
—F* ) A(F) I | Aje *s Fe® (u, T, )\),
3, keS

where v 1s unique solution of (2. 2) and

aly= | T @t T rd:

1€S ked

(2. 9)'

Here and elsewhere, the convention 00—=1 will be
observed.

The joint distribution of /¥ and X; whichis
called the Whittle - 1 distribution, is

Pl(s) (F: uIT: /\9 B)

=0,P(F|u, \),ueS, & uT,N\)- (219)

The marginal distribution of U for a given probability

vector 8= (0 6,) is a multinomial distribution,

]2 ¢+ Vs
M,(1,8). The margiral distribution of F for a given
/\ is given as follows.

There are exactly s pairs of integers (x, y)=

(u,u), u ¢ S, which satisfy the equations

Fj+—F+j == Bjx Bjy,jSS, (2. ll)
ifFa Q)Sl*

(1, v), u 5 v to these equations if F g ®* 4 (T, /\), see

(T, /). There is a unique solution (x, y) =

Martin (1967, Lemma 6. 1. 5). Then, the marginal

ditstribution of F for a given t. p. m. /\ known as the
Whittle - 2 distribution, is

PQ(S) (PIT: /\:- 0, ==

] F.
AR DToFr ) | T A 75 Feoxa (T, ),
JES 1, keS

.... Fi
AR 0F* ) | [k Fe oo, N,
1, keS
(2. 12)

where (u, v) is the unique solution to (2. 11) when I -

E(Dsz* (T*.r /\) .
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2. 3. Unconditional distributions.

We shall assume the «natural conjugate priors»
for 8 and /\ to be independent of each other. The
«natural conjugate prior» for 6 is a Dirichlet distrib -
ution and for /\ is a matrix beta distribution. We denote
these distributions by D(a) and MB (p), respectively.
The resultant unonditional distribution will be named
the Beta - Whittle distribution.

To specity the space of values of I, we define

Q. (u, v, T)= U D (u, v, T, /\)a (2. 13)

/\sQS
O (u, T)y= ) @, (u, T, /\), (2. 14)

\eQ,
o* (T)= | ) ©*(T, M), (2. 15)

N\eQ,
Doy * (T) = |J @1* (T, /\), (2. 16)

/\eQ,

and

D ¥ (T) = d* (T) — Dg1* (T). (2.17)

Now, we derive the unconditional distributions
by integrating the conditional ones with respect to q, ()
and q(/\), the prior distributions of 8 and /\,

respectively. That is,

0
@ =g@ | [ o

JES
where he parameter ¢ =— (@), a; >0, j& S, and

5()=T(e.)/ | | rep,

JES
nad 0O, = Z a;5 and
JES
pjk— 1
q(/\)-—-C p) l I /\Jk ) /\SQs:
3, keS

where the parameter p=— (ij) , pik>0,3, ke2, and
C(p) = I I {F(P+)/ I I F(ij)},
1S keS

Z Pik ,j € S.Thus, torm (2. 9), he Beta -
keS

and Pir=

Whittle distribution for a MB (p) prior and known u
(while F g @ (u, T) is '

P(F|u)=F(u)*A(F) fg ( H /\]_?J"‘)q(/\)d(/\)

s j,keS XK
:Ff(vu)tA(F)B(p, F), (2. 18)
where v is the unique solution to (2. 2) and

B(p, F) = H {[T(pj+-+F;s)] H [T (pj+

1eS keS
+Fi) /T (P;1) 1}

Similarly, from (2. 10) when assuming a D (a) prior for

(2- 18)"

0, we obtain the Beta - Whittle - 1 distribution, for
Pi(F,u)= f f 0,91 (8)P(F|u, N)q(/\)d(/\)d(®)
6 v Q)

=A(F)+B(p, F)+ G(F#vu’ @), ued, Fe®g(u, T)

(2. 19)
where
C(F* ) =[T(@)/ | | r@] (¥ rie
7 &S
+1) | | r@ure+n1.
keS '
fv (2. 19)

Finally, the Beta - Whittle -2 distribution is derived
from (2. 12). Thus,

Po( F) = f f P,(F |\, ©)q1(®)a(/\) d(A)d(e),
oY Q.

[A(F f (Z 0, F*(i5)) d1(e) d(8)
O jeS

f (H H AV, ik ) a(/\) d(/\), Fe @g*(T),

3jeS k&S

}

F* (gu) « AF) f q(8) d(®) -

f ( H I_I /\Jk Jk) q(/\) d(/\): Fg (1)32*(T)

2 jeS keS

where (u, v) is the unique solution to (2. 11) when



d
Fed*,(T). Therefore, the distribution is

Py ] A Blp.F) + C(F*, 0), Fe @)

(2. 20)

where A(F), B(p, F) and G(F* ), a) have been detined
in (2. 9)’, (2. 18) and (2. 19)’, respectively, and where

C(F* a)=[T(a,)/ H [(a)]
J€S

x [ 2FG*T+D | | roo/me.+1)]

Jed keS '
: 2. 20
k 43 ( )

When u is known, P(X ,=u l 0) = 0,=1 Then,
(2. 19) reduces to (2.18). In the sequel, we shall consider

both cases and treat them simltaneously.

3. Bayes estimate of /\
3. 1. Posterior distribution of /\.

We assume squared error loss. Hence, the loss
function associated with the estimation of /\ by d—
(dik), 3, k€ S, 1s given by, from De Groot (1970)

L(A,d) = D (dx—\p)?
1, keS

It can be easily shown that the minimum risk 1s achived
when each /\;, j, k € S has least possible risk. Thus,
the Bayes estimate of /\ is found by finding the Bayes
estimate for each /\ ik, J ke This 1in turn is given by

the posterior mean of /\ for given F.

Theorem 3. 1.

Let F be the f. c. m. of a single stationary Marov

chain up to time T. Let /\ be the t. p. m. of the chain.
Assume /\ has a MB(p) prior distribution. Then, the
posterior distribution of /\ given F is a MB (p+ F).
Furthermore, the conclusion is true whether the initial

state Xo =: u 1S known or unknown.

A(F) + B(p, F) + C(F*(yu), @), Fe®™o(T)

<:1"‘(,./\)=——'f9

e qf)b el S5O 9 JEs! Jlezal U‘.‘g)l"t,a b)_gTJg o

Proof.

First, we suppose u 1s not known. Then, from

(2. 10) and (2. 20), we have

. a O
q* (/\,B)EK(F, a’p)eu U.I I 0, k IX
keS
k = u

Futpo. — ]
l I/\j" jie” Pt , 00, /\ £Q,,
1,keS

where K(.) is frec of 6; and /\;y, j, k € S. Then,

F.to.—1
q*(/\, 0) d6 o< I | /\jk ik Pik :/\593
1, ked
(3. 1)

It is obvious that (3. 1) is a MB(p + F).
When uis known, we have 6,—1, ueS and

the above derivation more easily gives (3- 1). B

Theorem 3. 2.

Let F be the f. c. m. of a single stationary Markov
chain up to time T. Let /\ have a prior distribution
MB (p). Then, the Bayes estimate of /\ relative to the
squated error loss function, whether the initial state

XO:::U is known or unknown, is

Ap=/\g(F> p)=(/\p; jk) (3 2)

where

Apsje=(Fu+pji)/(Fj+ +pjs), J, ke S,

Proof.

Itis enough to find the Bayes estimate of /\ .
For the squated error loss function, the posterior mean

1s the Bayes estimate. Thus,
/\B;jk=fg Nje + a*(\) d(N\) =
S

=(F+pik)/ (Fj++pj+). B

The maximum likelihood estimate (MLE) of /\
based on F, which will be denoted by /\ y =

(/\ML;jk) ’ 1s



[See Bartlett (1951) or Billingsley (1961)]. Note that

/\B; ik 1s a convex combination of /\ gy ; ik and E(/\ jk)

= Pjk/Pj+s
4. Emuyirical Bayes estimate of A .

4. 1. Preliminaries.

In this section, we shall estimate Pik from the
«past data». Then, we shall substitute these values in
(3. 2). The resultant value will be called an EB estimate
of /\.

Let N ={1, ..., n}. Here, the «past data» refers
to theset {F,, i e N} which are independent of F=F,
which represents the «current data», but they are -
identically distributed as F.

We have seen in (2. 19) that the pair (F, u) 1s
distributed according to a Beta - Whittle -1 distribution.
The marginal distribution of U 1s identical to a Diri -
chlet - Multinomial distribution. The EB procedure

for esimation of parameters of this distribution has

been considered in Billard and Meshkani (1978).

Now, we address ourselves to the estimation of
p; from {F;,1¢ N} . The marginal distribution of F
was given in (2. 20) which contains s (s+1) parameters
o and p. We can readily estimate s parameters ¢ by
methods proposed in Billard and Meshkani (1978) .
Theretore, in the rest of this section, we concentrate

only on the estimation of p.

4. 2. Method ¢f moments estimate of 0
Exact formulae for moments of F are too com -
plicated to be useful in estumating . Using some results

of Martin (1967), we have

T=1
E(Fji) =E [By(Fu) 1= X Ea(A & Aj)s . keS
- =0

where the subscript 1 or (2) indicates the expectations

have been taken for a given /\ (with respect to the dist -
ribution of /\). We also have

U;lg‘wd L;Jv\ﬁ-x.d ;:'5..3 6

E(F jFgp) =

[(Sjg‘skh E(ij,), T=—1
T—1
Ojg Okn E (Fii) +- Z Eo(AuitT 119 4 X

t=1

T=2,]j, k, g,heS.

l

Evaluation of the expectations in the above
equations will lead to polynomials of degree (T - I)
in Pk 3, keS. When T' = 3 , the resultant equations will
be almost intractable. Since for singl chains, T is usually

far greater than 3, setting T =3 above to obtain solvable

equations, would be a waste of available information.

Moreover, the estimates would not be very efficient.

We shall seek some functions of F which render

simpler expressions for their moments. One of these

functions is
Mjkr—':ij/Fj+jakSS' (4- 1)

Since /\ is assumed to be irreducible, /\ + 7 0,

all j ¢ S. Thus, from the condition (2. 2), for T large

enough, Fj+>0,j e S. We assume Fj+>0,j £S5 SO

that we can use M, to estimate p ke

Whittle (1955), under the assumption that

Fj+>0,j SS gave
Ej(Mj|u)=Ax(T+ay)/T40(T -32), (4.2)

and
COVI (Mjk:Mgh ‘ u) ﬂajg(ale:h - /\jk/\gh) X

Ei(Fj, [u) + 0(T%2), (% 3)

where ay is the (j, k) 2 element of the matrix of right
eigenvectors. By appropriate normalization of a, we
can make 0 << ajkgl

Now, using (4. 2) and (4. 3) and a,=1, we
shall find the unconditional expectations and covariances

rclative to the MB(p) prior for /\. In the sequel, we
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.

shall assume T 1s large enough so that we can ignore

0(T—3/2), Thus,

E(M;)=[(T+41)/T] pi/Ps+-Jr ke S, (4-4)

and
Cov(Mji, Mgp) = 08360 k(Bknpj+ — p3) /  Pis
j»k,g, heS (% 5)

0;={p+E[F1]1+4 [(T+1)/T]%}/(p;+ + 1), j€S.
(4. 6)

The tesult (4. 5) indicates that ditferent rows
of the matrix M = (M ik) are uncortrelated. Since A1 =1
we shall delete its last column to avcid singularity

in the civariance matrix of Af. The covariance natrix

of the first (s—1) columns of A will be denoted by Z*

‘Then, z:* is a block diagonal matrix of order s(s — 1)

% s(s — 1)« That 1s,

>, =Diag{ D}

where the elements ¢* ik jh:COV (Mjk, M p) of

ij* are degined in (4.5).

We observe that for each jg S, the relations -
(4. 4) give (s—1) linearly independent equations in s
unknowns , p;., k &€ S- We need one more equation.

This 1s established as follows.

From (4. 5), we may write

COV(M- Mj h) == (DjE(Mjk‘) [ Oxp — E(

jko Mjh)] » k, hesS.

In matrix form, we have

25 =°
T

where we define the elements of

o9 ] 4"7
JJ JSS ( )

1.. to be
JJ

Ojk: jh:E(Mjk) [akh"‘"‘E(MJ‘h)], k, hedS.

We cansclve (4. 7) for ® jto obtain

| mj::{ I ij* I/ l ij] }ll(s-—-—l), JeS

Therefore, substituting for @; 1n (4. 6) and solving for

pj+» We have

pi+={[(T+1)/T]?~ 0}/[0; - E(F;!)],jeS.
(4. 8)

"This, together with (4. 4) which is rearranged into

pik="Tp; E(My)/(T+1),j, keS

allows us to solve for Piks i, keS.

The equations (4. 4) and (4. 8) give the para -

meters In terms of the moments of M, and F;l_l

Now, we substitute the sample moments obtained from
the «past data» in (4. 4) and (4. 8) to obtain the method
of moments estimates of p ik ], k & S. These estimates
will be denoted by T3k 1 keS.

Foreach jg¢ Sandk,h¢ S, let usdefine thesample

means M ==(M k) and G=(G ;)> and sample covariances

A A A A

:
ij:(cjk’ Jh) and ijm(ajkﬁjk) where the -

elements are respectively defined by

mjkﬂn—l Z (Fi;jk/Fi;j-{-): (4. 9)
ieN
n—1 Z‘ F1 . (4. 10)
ie N
A
6"k jh=(n—1) —IZ (M55 51— M) (M 55— M)
1eN
(4. 11)
and
A
Ojk> jh== Mjk(ﬁkh — M; h)e (4. 12)

‘T'hen, the estimates of Wjs Pjy4s and p;, respectively are

ci={| Z5l/1 2y eDeies  @13)

and
ri+={[(T+1)/T]%—c;}/[c;—Gj]},i e,
(4. 14)
and
rj="Trj;M/(T41),j, keS.  (115)
Consequently,
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Tig=T;, — erk: rj+(TMjs—{— 1)/(T-1),je8.

keS (4. 16)
Therefore, from (3. 2), the EB estimate of /\, dentoted
by /\gp, is obtained by replacing py by ry - Thus, we

have the following result.

Result 4.1
The EB estimate of /\ obtained by the method of

moments is the matrix /\pp whose elements /\gp;y are
given by

Neps o= (F+rj)/ (Fje +15.):3,keS .
(4. 17)

4.2. Maximum likelihood estimate of . P

The unconditional distribution of F, wviz., the
Beta - Whittle - 2 distribution, was given in (2. 20).
Hence, the likelihood of F, when we observed the

chain until time T, 1s

L(p|F)=K(F, a) . B(p, F)

where K(F, o) 1s free ot p, We note that L(p‘F ) may

be written as

L(Pl F)"":HL(Pj+] Fj+)

1ES
x I IB(pj+5F_|+)
j€S
Hence, it is suificient to maximise B(p i+,Fj4) for each
j €S- However, this is simply the case of the multinomial

distribution of Billard and Meshkani (1978). Using

their approach, we obtain a maxiumm likelihood

estimate p ik for each Pik? J, ke S. That1s, we have the -

foll ovaing result,

Result 4. 2.
The EB estimate of /\ obtained by the maximum

likelihood method is the matrix /\ g zwhose elements /\;p; ik
are given by

A A

/\EB;jk=(FJk+ P j+)/(Fj++ Pj+) J, k&S,

(4. 18)

This estimator, although requires more complicated

computations, is more efficient than (4. 17).

It can be abserved that our both estimators are
linear Combinations of maximum likelihood and -

Bayes estimators, 1. e.,

/\EBS jkﬂa/\MLa jk ‘I"b/\B > jk*

5. Concluding remarks

There are many interesting questions remaining
especially those pertaining to the properties of these
estimators as the number of «past pata» n increasees. A
detailed study of some rainfall data in which the tech -
niques of the work have been applied is currently being
prepared. We note that we have been considering the
case of a single sequence of observations. This is In
contrast to the related but different case in which sveral

independent sequences are obeserved collectively. That

case was not attempted here.
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