
JSUT 33(3), 2008, p. 1-5 
 

 
Parallel Generation of P-sequences 

 
Ahrabian H., Nowzari-Dalini A. 
Center of Excellence in Biomathematics, School of Mathematics, Statistics, and Computer Science, University of Tehran, Tehran, 
Iran 
* Corresponding author, e-mail: ahrabian@ut.ac.ir 

(received: 13/1/2007 ; accepted: 28/12/2007) 
 

Abstract 
We present a cost-optimal and adaptive parallel algorithm for generating t-ary trees with P-sequences. The 
computational model employed in this algorithm is an exclusive read exclusive write with a shared memory single 
instruction multiple data computer. Our parallel algorithm is the first designed P-sequence generation on this model. 
Prior to the discussion of this parallel algorithm, a new sequential algorithm for generation of t-ary trees with P-
sequences in O(1) constant average time per sequence is presented. 
 
Keywords: B-order, Parallel Algorithms, P-sequences, t-ary Trees. 
 
1. Introduction 
The generation of certain interesting combinatorial 
objects plays a significant role in computer science. 
If we wish to produce an exhaustive list of 
combinatorial objects, the time required to create the 
representation of two consecutive objects in the list 
is extremely important since the cardinality of a 
class is generally an exponential function of the size 
of generated objects. In order to increase the speed 
of the generation, many parallel algorithms for 
certain combinatorial objects have recently been 
published (Ahrabian and Nowzari 2007, 2005, Akl 
et al. 1990, 1994, 1996, 1996b, Stojmenovic 1990). 
The advantage of a parallel generating algorithm 
over an equivalent sequential version is that objects 
may be generated with constant delay. The model of 
parallel computation should be as simple as 
possible, and the algorithms be cost-optimal and 
adaptive. A generating algorithm satisfying these 
criteria is optimal in every suitable sense. There are 
parallel algorithms which satisfy these optimality 
criteria for generating combinatorial objects such as 
permutations (Akl et al. 1994), combinations (Akl et 
al. 1990), derangements (Akl et al. 1992), subsets 
and equivalence relations (Stojmenovic 1990), 
binary and t-ary trees (Akl et al. 1996, Kokosinski 
2002, Vajnovszki 1996), variations (Akl et al. 1991, 
Stojmenovic 1996), and well-formed parentheses 
strings (Akl et al. 1996). 

Trees are one of the important combinatorial 
objects in computer science and have many 
applications. A list of all t-ary trees might be used to 

search for a counter example to some conjectures, or 
to test and analyze an algorithm for its correctness 
or complexity. Usually, trees are encoded as integer 
sequences and instead of generations of trees, these 
sequences can be generated. Some of well-known 
encodings are P-sequences (Akl et al. 1996, Pallo 
1987), inversion tables (Kontt 1977), 0-1 sequences 
(Zaks 1980). This paper deals with the exhaustive 
generation of P-sequences for encoding trees. Few 
clever sequential algorithms for generating lists of 
P-sequence are discussed in (Gupta 1991, Pallo 
1987). These algorithms have constant amortized 
time, i.e., the total amount of computation divided 
by the number of generated objects is constant, but 
linear in the worst case. 

Some papers dealing with the parallel generation 
of t-ary trees with different encodings have been 
published (Ahrabian and Nowzari 2007,2005, Akl et 
al. 1996, Kokosinski 2002, Vajnovszki et al. 1997, 
1999). Akl and Stojmenovic (1996) represented 
trees by an inversion table and the employed 
processor model is a linear array multiprocessor. 
The generated integer sequences corresponding to 
the t-ary trees of n internal nodes in this algorithm 
are of length n and the parallel algorithm is executed 
by n processors. Vajonvszki and Phillips (1997) 
represented trees by 0-1 sequences and the 
algorithm is run on a shared memory 
multiprocessor. Vajonvszki and Phillips (1999) 
presented a parallel generating algorithm for t-ary 
trees represented by P-sequences on a linear array, 
which is the only parallel algorithm for P-sequences. 



2 Ahrabian & Nowzari-Dalini JSUT, 32 (2), 2006 

The latter two algorithms generate sequences of 
length tn with tn processors. Kokosinski (2002) 
generated t-ary trees of n internal nodes by 0-1 
sequences in parallel with an associative model by n 
processors. Ahrabian and Nowzari (2005) presented 
an adaptive and cost-optimal parallel generation 
algorithm for t-ary tree sequences by 0-1 sequences 
in an Exclusive Read Exclusive Write (EREW) 
Shared Memory (SM) Single Instruction Multiple 
Data (SIMD) model (see Akl (1989) for more 
details about this model). 

In this work we describe two new sequential and 
parallel algorithms for generating t-ary trees with P-
sequences. Our sequential algorithm generates each 
sequence in constant average time O(1). Algorithm 
satisfies the properties given in the previous section, 
and is adaptive and cost-optimal. The employed 
computational model is an EREW SM SIMD 
computer, and the algorithm is the first designed P-
sequence generation technique on this model. It 
should be noted that EREW SM SIMD is the 
simplest and most implementable model in parallel 
computing.  

The rest of this paper is organized as follows. The 
notations and definitions required for further 
sections are given in Section 2. New sequential 
generation algorithm for P-sequences is discussed in 
Section 3. In Section 4, the corresponding parallel 
algorithm is presented. Finally, the conclusion is 
given in Section 5. 
 

2. Notations and Definitions 
A t-ary tree T with n internal nodes can be defined 
recursively as being either an external node or an 
internal node together with a sequence T1,T2,...,Tt of 
t-ary trees. Ti is defined as the ith subtree of T . An n 
internal nodes t-ary tree has (t − 1)n + 1 external 
nodes. The set of t-ary trees with n internal nodes is 
denoted by Tn,t and the cardinality of this set, 
denoted by Cn,t, is known to be 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

=
n
tn

nt
C tn 11

1
,

. 
P-sequence were initially introduced in (Pallo 1987) 
for coding and generation binary trees. These results 
are generalized for t-ary trees in (Pallo 1987). As it 
is mentioned earlier, the parallel algorithm given in 
this paper generates the t-ary trees represented by 
generalized P-sequences, defined as follows. 
Definition 1. Given a tree tnTT ,∈ , the P-sequence of 
T is the integer sequence ( )121 ... −tnppp  where pi is the 
number of internal nodes written before leaf i in pre-
order traversal of T. The integer corresponding to 
the last leaf, the n(t − 1) + 1th leaf, is always equal 
to n, therefore we can omit this number. 

For example the P-sequence corresponding to the 
t-ary tree T denoted in Fig. 1 is the integer sequence 
p = 233333334455555. 

 

 
Fig. 1-A 4-ary tree with 5 internal nodes. 

 
Lemma. (Pallo 1987) An integer 
sequence ( )121 ... −tnppp  is the P-sequence of a tree T 
in Tn,t if and only if: 

( )
( )

( ),11,
1
11)3

,)2
,111,)1

1

1

−≤≤≤⎥⎦
⎥

⎢⎣
⎢
−
−

+

=
−−≤≤≤

−

+

tniiallforp
t
i

nP
tniiallforpp

i

tn

ii  



Parallel Generation of P-sequences                             3 

where ⌊x⌋ is the largest integer less than or equal to 
x. 

Let Pn,t be the set of P-sequences for coding n 
internal nodes t-ary trees. The first P-sequence, in 
decreasing lexicographic order, in Pn,t is  
 

 
and the last one is 
 

 
 

Any generation algorithm imposes an ordering on 
the set of trees. Such an ordering is called B-order 
(Zaks 1980). 
Definition 2. Given two t-ary trees T andT ′ , we say 

TT ′< in B-order if: 
1) T is leaf and T ′  is not leaf, or 
2) For some i (1 ≤ i ≤ t),  

a) jj TT ′=  for j =1, 2,...,i − 1, and 
b) ii TT ′<  in B-order. 

In (Pallo 1987) it is shown that the lexicographic 
order over Pn,t matches the B-order of trees in Tn,t. In 
this paper, P-sequences are generated in decreasing 
lexicographic order and their correspondding trees 
are in the reverse B-order. 
 
3. Sequential Generation Algorithm 
In this section, we describe an algorithm for the 

generation of P-sequences corresponding to t-ary 
trees. Giving a sequence as input, the next sequence 
in Pn,t is generated by the algorithm Next given in 
Fig. 2. This algorithm generates consecutive P-
sequences in decreasing lexicographical order which 
their corresponding trees are in the reverse B-order. 

Recall from Section 1, a P-sequence of a t-ary tree 
T is an integer sequence ( ) 1121 ... +−= ntpppp , where 
pi is the number of visited internal nodes during 
visiting the ith external node in the preorder 
traversal of T. The algorithm produces each P-
sequence by decrementing an element of the input 
code. As we can see in the algorithm, the first loop, 
searches for the first decreaseable element from 
right to left in the sequence. The decreaseable 
element is an element whose value is greater than 
the corresponding value in the last generateable P-
sequence in Pn,t. In other words, employing P-
sequence properties given in the lemma in Section 
2, this decreaseable element is ith element in the 
sequence whose value differs from its predecessor 
element and is greater than 

⎥⎦
⎥

⎢⎣
⎢

−
−

+
1
11

t
i . After 

determining the position of this element, its value is 
decremented, and the elements on the right are set to 
n. Clearly, to generate all the set Pn,t, algorithm Next 
is called Cn,t times, while the initial input sequence 
is equal to the first P-sequence and each generated 
sequence would be the input of the next iteration. 

 

 
Fig. 2-The algorithm Next for generating P-sequences.  

 
Regarding the steps of this algorithm, its time 
complexity in worse-case is O(tn). Therefore, the 
total required time for generating all P-sequences in 

worst-case is O(tnCn.t). With a discussion similar to 
the one given in (Pallo 1987), we can prove that the 
average time complexity of this algorithm is O(t). 
4. Parallel Generation Algorithm  



4 Ahrabian & Nowzari-Dalini JSUT, 32 (2), 2006 

In this section a new parallel algorithm for the 
generation of P-sequences is presented. The 
computational model for this algorithm, illustrated 
in Fig. 3, is EREW SM SIMD with N ≤ (t − 1)n 
processors. The principal idea is to let each 
processor generate a part of the P-sequence. The 
sequence p is subdivided into N subsequences of 
length m = ⌈(t − 1)n/N⌉ and the processor i is 
assigned {p(i-1)m+1, p(i-1)m+2,...,pim}. All the processors 
now perform the following processes: Each 
processor i finds the position of rightmost 
decreaseable element and stores its position in fi, 
then between all the N computed values fi, the 
maximum position is evaluated. Let ℓ be this 
maximum position. This value is broadcasted to the 
all processors. The above process requires O(tn/N ) 
+ O(log N) where O(tn/N ) is the time complexity 
for finding the decreaseable element, and O(log N ) 

is the time required for finding the maximum value 
of N elements in a shared memory and broadcasting. 
Later for each processor i (⌈ℓ/m⌉≤ i ≤ N ) we let 
pj=n where (i − 1)m +1 ≤ j ≤ im. The recent 
operations requires O(tn/N ) time, therefore the total 
required time for this algorithm is T (n)= O(tn/N + 
log N ). 
Theorem. The Parallel-Next algorithm is cost-op-
timal and adaptive. 
Proof. Regarding the time complexity of Parallel-
Next, the cost of this algorithm is equal to C(n)= 
O(tn + N log N ). 
By considering the time complexity of the 
sequential algorithm Next in worst case, given 
in previous section, this parallel algorithm is 
cost-optimal for N ≤ (tn) / log(tn) processors. 
The adaptivity of this algorithm is clear. 

 

 
Fig. 3-Parallel version of the algorithm Next. 

 
5. Conclusion  
We have developed a parallel algorithm for 
generating n internal nodes t-ary trees represented 
by P-sequences. This algorithm is a parallelized 
version of a novel sequential generation algorithm 

presented in this paper. The algorithm is adaptive 
and cost-optimal, and satisfy all the desirable 
properties of a parallel algorithm. The 
computational model employed in this algorithm is 
an EREW SM SIMD model. This model is the 



Parallel Generation of P-sequences                             5 

simplest and most implementable model in parallel 
computing. Clearly, any designed parallel algorithm 
in this model can be implemented on the other 

models. Therefore, our parallel algorithm can be 
implemented on any parallel computer. 

 
References 
Ahrabian, H. Nowzari-Dalini, A. 2007: Parallel generation of t-ary trees in A- order. Comput. J. 50: 581-

588. 
Ahrabian, H. Nowzari-Dalini, A. 2005: Parallel generation of t-ary trees. J. Sci .I R. Iran 16: 169-173.  
Akl, S.G. 1989: The Design and Analysis of Parallel Algorithms. Prentice Hall, Englewood Cliffs. 
Akl, S.G., Clavert, J. and Stojmenovic, I. 1992: Systolic generation of derangements. In: Algorithms and 

Parallel VLSI Architectures II (eds. P. Quinton and Y. Robert), Elseivier, New York, P. 49-70.  
Akl, S.G., Duboux, T. Stojmenovic, I. 1991: Constant delay parallel counters. Parallel Process. Lett. 1: 

143–148. 
Akl, S.G., Gries, D. Stojmenovic, I. 1990: An optimal parallel algorithm for generating combination. Inform. 

Process. Lett. 33: 135–139. 
Akl, S.G., Meijer, H. Stojmenovic, I. 1994: An optimal systolic algorithm for generating permutations in 

lexicographic order. J. Parallel Distrib. Comput. 20: 84–91  
Akl, S.G. Stojmenovic, I. 1996: Generating combinatorial objects on a linear array of processors. in: Parallel 

Computing: Paradigms and Applications (ed. A. Y. Zomaya), International Thomson Computer Press, 
Boston, p. 639–670. 

Akl, S.G. Stojmenovic, I. 1996 b: Generating t-ary trees in parallel. Nordic J. Comput. 3: 63-71.  
Gupta, D.K. 1991: On the generation of P-sequences. Intern. J. Comput. Math. 38: 31– 35.  
Knott, G. 1977: A numbering system for binary trees. Comm. ACM 20: 113–115. 
Kokosinski, Z. 2002: On parallel generation of t-ary trees in an associative model. Lecture Notes in 

Computer Science 2328: 228–235. 
Pallo, J. 1987: Generating trees with n nodes and m leaves. Intern. J. Comput. Math. 21:133-144  
Pallo, J. Racca, R. 1985: A note on generating binary trees in A-order and B- order. Intern. J. Comput. Math. 

18: 27-39.  
Stojmenovic, I. 1990: An optimal algorithm for generating equivalence relation on a linear array of 

processors. Bit 30: 424–436.  
Stojmenovic, I. 1996: Generating n-ary reflected Gray codes on a linear array of processors, Parallel 

Process. Lett. 6: 27–34. 
Vajnovszki, V. Phillips, C. 1997: Optimal parallel algorithm for generating k-ary trees. in: Proc. 12th 

International Conference on Computer and Applications (ed. M. C. Woodfill), International Society for 
Computers and their Applications, Raleigh, p.201-204.  

Vajnovszki, V. Phillips, C. 1999: Systolic generation of k-ary trees. Parallel Process. Lett. 9: 93-101.  
Zaks, S. 1980: Lexicographic generation of ordered trees. Theoret. Comput. Sci. 10: 63-82. 


