بررسی نقش رخساره ها و نوع تخلخل در کنترل کیفیت مخزنی سازند ایلام در یکی از میادین نفتی ناحیه دزفول شمالی، دشت آبادان

محمد حسنی گیو*، آرش ابرقانی اداره زمین شناسی تحت الارضی، مدیریت اکتشاف شرکت ملی نفت، تهران، ایران *مسئول مکاتبات- آدرس الکترونیکی: n.hasani@niocexp.ir (دریافت: ۸۸/۳/۱۱ ؛ پذیرش: ۸۸/۹/۲۵)

چکیدہ

بررسی دقیق ارتباط عناصر زمین شناسی و پارامترهای به منظور، مخزن ایلام در یکی از میادین نفتی ناحیه دزفول شمالی، با استفاده از داده های پتروفرانی. پتروفیزیکی و نتایج آزمایشات مغزه مورد بررسی قرار گرفت. مقاطع نازک میکروسکوپی تهیه شده از مغزه و خرده سنگ از دیدگاه بافت رسوبی و عملکرد فرآیند های دیاژنزی به دقت مورد مطالعه قرار گرفتند که منجر به تشخیص ۱۰ میکروفاسیس گردید. میکروفاسیسهای ایلام بالایی متنوع و غالبا دانه پشتیبان، اائیدی-پلوئیدی مربوط به محیط پرانرژی، در ایلام میانی تنوع میکروفاسیسها کم، غالبا وکستون، گاهی پکستون و ایلام پایینی نیز در برگیرنده میکروفاسیس مادستونی و گاهی وکستونی است که بیانگر رسوبگذاری در محیط نسبتا عمیق و کم انرژی است. مهمترین فرآیندهای دیاژنزی در بخش بالایی، تراکم فیزیکی زودرس و سیمانی شدن کلسیتی و در بخشهای میانی و پایینی دولومیتی شدن و پیریتی شدن است. شدت عملکرد فرآیند دیاژنزدر بخش بالایی به مراتب بیشتر است سیمانی شدن کلسیتی و در بخشهای میانی و پایینی دولومیتی شدن و پیریتی شدن است. شدت عملکرد فرآیند دیاژنزدر بخش بالایی به مراتب بیشتر است میمانی شدن کلسیتی و در بخشهای میانی و پایینی دولومیتی شدن و پیریتی شدن است. شدت عملکرد فرآیند دیاژنزدر بخش بالایی به مراتب بیشتر است میمانی شدن کلسیتی و در بخشهای میانی و پایینی دولومیتی شدن و پیریتی شدن است. شدت عملکرد فرآیند دیاژنزدر بخش بالایی بیشتر است مواریکه در اکثر موارد میکروفاسیهای ائیدی– پلوئیدی مستی و در بخش پایینی نیز بیشتر از نوع قالبی، حفره ای و بین دانه ای، در بخش میانی، قالبی، قالبی توسعه یافته و درون فیلی و به ندرت شکستگی و در بخش پایینی نیز بیشتر از نوع قالبی، حفره ای و بین دانه ای، در بخش میانی، قالبی، قالبی توسعه یافته و درون فیلی و به ندرت شکستگی و در بخش پایینی نیز بیشتر از نوع قالبی، حفره ای و بین دانه ای، در بخش مینی و میلور، در بخش بالایی و منطبق برافتهای دانه پشتیبان با تخلخل بین دانه ای است. بخش میانی تخلخل بسیار خوبی دارد ام به دلیل وجود سیستم تخلخل با گلوگاههای باریک و ریز تخلخلها، تراوایی و در نتیجه میزان تولید هیدروکربور بسیار اندک است . افزایش انگهانی انباع با موار و تولوگاههای یتخلخل با گلوگاههای باریک و ریز تخلولها، تراوایی و دانه پشتینی نیز بیشتر از نوع قالبی و میرا میای آب در مار می و پار فره می بر و گلوگاههای

واژههای کلیدی: پارامترهای پتروفیزیکی، تخلخل، کیفیت مخزن.

مقدمه

پس از وقفه طولانی مدت زمان تورونین، با پیشروی آب ابتدا شیل و رس سنگهای سازند لافان در یک محیط دریایی محدود و نزدیک به ساحل نهشته شد (مطیعی ۱۳۷۲)، سپس با ادامه بالا آمدن سطح آب، رسوبات آهکی سازند ایلام (بخشهای زیرین و میانی) در محیطی نسبتاً عمیق و کم انرژی (میکروفاسیس الیگوستجینید) نهشته شد. بتدریج با کم عمق شدن حوضه در قسمت فوقانی سازند، رسوبات آهکی مربوط به محیط پرانرژی همراه با بین لایه هایی از مارل رسوبگذاری شده است. اگر چه شواهد مستدلی برای تشخیص محیط رسوبی لایه های مارلی بخش فوقانی مشاهده نمی شود، اما به نظر می رسد که رسوبگذاری این لایه ها در مجاورت میکروفاسیس های پر انرژی و کم عمق می تواند مربوط به زمانهای افت سطح آب و نفوذ رسوبات آواری

به حوضه باشد.

سازند ایلام در ناحیه مورد مطالعه با سن سانتونین و با ضخامت متوسط حدود ۱۲۰ متر شامل آهکهای کرم رنگ روشن، گاهی خاکستری روشن با بین لایه های مارل در بخش فوقانی می باشد. این سازند در بر گیرنده زون تجمعی فسیلی شماره ۳۰ (Wynd 1965) بنام بسازند در بر گیرنده زون تجمعی فسیلی شماره ۳۰ (Wynd 1965) بنام بسیار خوبی دارد، تراوایی آن بسیار ناچیز بوده و تولید چندانی ندارد. یکی از دلایل این مورد می تواند مربوط به میکروفاسیس های موجود و نوع تخلخل آن باشد. هر چند عوامل دیگری همچون تر شوندگی (Wettability) نیز ممکن است دخیل باشند. در این مطالعه سعی بر این است که میکروفاسیس ها، نوع تخلخل موجود در سازند ایلام و تاثیر این دو بر ویژگی مخزنی بررسی شود.

میکروفاسیس های سازند ایلام:

مطالعات میکروسکوپی مقاطع نازک تهیه شده از مغزه های موجود و خرده های حفاری (Cutting) موید وجود چند میکروفاسیس مشخص در سازند ایلام است. در این رابطه با استفاده از منابع علمی (Flugel Flugel)، مقاطع نازک تهیه 2004, Tucker & Wright 1990, Wilson 1975 شده، از دیدگاه سنگ شناسی (عناصر اسکلتی و غیر اسکلتی، سیمان و شده، از دیدگاه سنگ شناسی (عناصر اسکلتی و غیر اسکلتی، سیمان و ماتریکس، ویژگیهای بافتی و دیاژنزی) و بالاخص انواع تخلخل مورد مطالعه و بررسی قرار گرفتند که منجر به تشخیص 10 میکروفاسیس مختلف گردید. نمایی از میکروفاسیس های مطالعه شده در شکل ۱ قابل مشاهده می باشد. همچنین گسترش و توزیع میکروفاسیس های مورد بحث در طول ستون چینه شناسی سازند ایلام در شکل ۲ نشان داده شده است.

میکروفاسیس ۱ – بیوکلاستیک وکستون، شامل خرده های اکینوئید، جلبک، روتالیا (گونه 22) و گاهی گاستروپود می باشد. فرایند دیاژنزی عمده شامل دولومیتی شدن ضعیف است که گاهی بصورت بلورهای ریز تقریباً هم اندازه و با توزیع یکنواخت، در برخی نمونه ها مشاهده می شوند. تخلخل ها عموماً از نوع قالبی و قالبی توسعه یافته (Mouldic & Enlarged Mouldic) و نیز حفره ای بصورت ناچیز می باشند.

میکروفاسیس ۲ – اینتراکلاست وکستون – پکستون، دربر گیرنده اینتراکلاست های درشت گرد تا نیمه گرد شده که متراکم شده و ماتریکس دروغین (Pseudomatrix) ایجاد کرده اند که در برخی موارد تشخیص آنها را از ماتریکس مشکل می نماید. در مواردی خرده های اکینوئید و با فراوانی کمتر دوکفه ای، پلوئید و ندرتاً ذرات گلوکونیت دیده می شود. تخلخل های حفره ای نسبتا درشت، قالبی و قالب های دیوسعه یافته و ندرتا شکستگیهای انحلالی (Solution Fractures) از جمله تخلخل های قابل مشاهده در این میکروفاسیس اند. مهمترین فرایند دیاژنتیک در این میکروفاسیس فشردگی فیزیکی است که به

میکروفاسیس ۳ – اینتراکلاست اائید پکستون – گرینستون، دارای اائیدهای دولومیتی شده و اینتراکلاست های کشیده که گاهی خود در برگیرنده اائیدها نیز می باشند. بیوکلاست ها شامل خرده های اکینوئید و جلبک و همچنین روتالیا بوده که گاهی به عنوان هسته اائیدها عمل نموده اند. در این میکروفاسیس به نحو قابل توجهی از مقدار ماتریکس کاسته شده و بر مقدار سیمان اسپاریتی افزوده شده است که نشانگر افزایش انرژی محیط است. فرایندهای دیاژنتیک غالب در این میکروفاسیس شامل دولومیتی شدن و نهشته شدن سیمان کلسیتی است. همبری دانه ها از نوع نقطه ای بوده و سایر انواع همبری ها (محدب، مقعر و درز دار) مشاهده نمی شود که نشانگر تقدم

سیمانی شدن بر فرایند فشردگی می باشد.تخلخل های مشاهده شده در این میکروفاسیس شامل انواع قالبی و حفره ای است.

میکروفاسیس ۴ – اائید گرینستون، اائیدهای تیره رنگ با فابریک شعاعی و جورشدگی خوب که در زمینه ای از کلسیت اسپاری قرار دارند. فرایندهای دیاژنتیکی شامل سیمانی شدن قبل از فشردگی کامل و تدفین (به علت تماس نرمال دانه ها) کلسیت اسپار دروزی و دولومیتی شدن بصورت بلورهای رومبوئدری پراکنده و همچنین گاهی بصورت سیمان بین دانه ها می باشد. بدلیل گسترش مناسب سیمان، تخلخل در این میکروفاسیس وجود نداشته و یا بسیار کم است. تخلخل های از نوع شکستگی نیز توسط سیمان کلسیت اسپاری پر شده اند. از دیدگاه انرژی محیط ، این میکروفاسیس پر انرژی ترین میکروفاسیس در بین نمونه های مطالعه شده بوده و مشخصه ای بر محیط های پر انرژی مانند پهنه های کم عمق (Shoals) ائیدی می باشد.

میکروفاسیس ۵- اینتراکلست گرینستون، شامل اینتراکلست های درشت نسبتاً زاویه دار تا نیمه گرد شده به همراه پلوئیدها، که احتمالاً حاصل از گردشدگی اینتراکلست ها هستند، می باشد که در زمینه ای از سیمان کلسیت اسپاری درشت بلور بلوکی (Blocky) قرار گرفته اند. دانه ها در اکثر موارد با هم در تماس نبوده و در صورت تماس نیز همبری آنها از نوع نقطه ای است که نشانگر سیمانی شدن قبل از تدفین و اعمال فشردگی، همانند میکروفاسیس ۴ می باشد. گسترش مناسب سیمان سبب عدم گسترش انواع تخلخل در این میکروفاسیس متراکم (Dense) است که تخلخل ها در آن محدود به انواع شکستگی است که در اکثر موارد توسط سیمان های مختلف پر شده اند.

میکروفاسیس ۶– پلوئید **گرینستون،** حاوی مجموعه ای از پلوئیدهای نیمه زاویه دار تا نیمه گرد شده با اندازه متوسط تا درشت می باشد. علاوه بر این بطور موضعی اائید و اینتراکلست نیز وجود دارد. فرایند سیمانی شدن در این میکروفاسیس چندان توسعه نیافته و تخلخل بین دانه ای بخوبی حفظ شده است. به دلیل وجود تخلخل بین دانه ای قابل توجه، این میکروفاسیس بهترین ویژگی مخزنی را به خود اختصاص می دهد.

میکروفاسیس ۷ – **بیوکلاستیک وکستون – پکستون،** شامل میکروفسیلهای روتالیا و الیگوستجینید همراه با خرده های اکینوئید می باشد. گاهی خرده های اکینوئید در این میکروفاسیس فراوان شده و در مقابل از فراوانی الیگوستجینید ها کاسته می شود که نشانه افزایش انرژی و کم عمق شدن محیط است. وجود میکروفسیلهای پلانکتون الیگوستجینید موید نهشت این میکروفاسیس در یک محیط نسبتاً عمیق می باشد.فرایند های دیاژنزی شامل دولومیتی شدن به

شکل ۱: میکروفاسیس های مشخص شده در سازند ایلام (F1, F2, F3, F4, ..., F10).

صورت رومبوئدرهای پراکنده و پیریتی شدن و در برخی موارد برخی موارد توسط پیریت پر شده است. نئومورفيسم افزايشى است. تخلخل غالب دراين ميكروفاسيس محدود ميكروفاسيس ٨ – بيوكلاست پلوئيد پكستون – گرينستون، به منافذ ریز قالبی و قالبی توسعه یافته و درون فسیلی است که در شامل پلوئیدهای نسبتاً ریز و خرده های دو کفه ای و اکینوئید است.

در برخی موارد ذرات گلوکونیت نیز به چشم می خورد. گاهی تحت تاثیر فرایند انحلال فشاری دانه ها در هم فرو رفته و همبری های محدب – مقعر ایجاد نموده اند. این میکروفاسیس در غالب موارد توسط سیمان کلسیتی درشت بلور به شدت سیمانی شده و تخلخل قابل توجهی ندارد.

میکروفاسیس ۹ – مادستون – وکستون، دارای میکروفسیلهای پلانکتون الیگوستجینید با فراوانی کم، هدبرگلا و ندرتاً روتالیا است که در زمینه ای میکریتی شناورند. با توجه به وجود میکروفسیلهای پلانکتون مذکور، این میکروفاسیس در محیطی نسبتاً عمیق و آرامتر از

میکروفاسیس ۷ نهشته شده است. فرایند دولومیتی شدن نیز گاه بصورت ضعیف و به شکل بلورهای رومبوئدری پراکنده و گاه بصورت دولومیتی شدن گسترده بافت سنگ قابل مشاهده است. تخلخل این میکروفاسیس بسیار ناچیز و از نوع قالبی (منافذ انحلالی درون پوسته الیگوستجینید و هدبرگلا) است که بطور موضعی با بلورهای پیریت پر شده است.

میکروفاسیس ۱۰ – پلوئید پکستون، در برخی قسمت های میکروفاسیس شماره ۲ و به صورت میان لایه ای، میکروفاسیس ای از

شکل ۲: ستون چینه شناسی سازند ایلام، نمودارهای پتروفیزیکی (شامل گامای طیفی، نوترون، چگالی و مقاومت) و توزیع میکروفاسیس ها در طول ستون چینه شناسی.

پکستون های حاوی پلوئیدهای ریز دیده می شود، که به دلیل اندازه ریز و شکل بیضوی یکسان و حالت تجمعی احتمالاً پلتهای مدفوعی هستند. گسترش انواع تخلخل بالاخص قالبی و قالبی توسعه یافته و گاهی بین دانه ای نیز در این میکروفاسیس قابل توجه است. پیریتی شدن مهمترین فرایند دیاژنتیک این میکروفاسیس است.

تقسیم بندی مخزنی سازند ایلام:

از دیدگاه زمین شناسی مخزن سازند ایلام به سه بخش ایلام بالایی، میانی و پایینی (شکل ۲) قابل تقسیم است که ویژگیهای زمین شناسی - پتروفیزیکی آن در ذیل تشریح می گردد:

ايلام بالايي:

این بخش با ضخامتی حدود یک سوم از ضخامت کل سازند، شامل تناوبی از آهکهای عمدتاً پلوئیدی – اائیدی و گاهی بیوکلاستی همراه با بین لایه های مارلی می باشد. با بیشترین فراوانی بین ۱۰ الی ۲۰ درصد و میانگین ۲۳ درصد این بخش بیشترین محتوی رس را به خود اختصاص داده است. مقدار تخلخل تصحیح شده (PIGN) از ۱ الی ۲۲ درصد در تغییر بوده و مقدار میانگین آن ۵ درصد می باشد. هیستوگرام شکل ۳ توزیع تخلخل تصحیح شده و محتوی رس را نشان می دهد. میکروفاسیس های ۱،۲،۳،۴،۵،۶،۸ در این بخش جای گرفته اند (شکل ۲). میکروفاسیس ها کاملا متنوع، متعدد و عمدتاً دانه یشتیبان (Grain Supported) مربوط به محیطهای پر انرژی و کم عمق می باشند. عملکرد فرایندهای دیاژنتیکی همچون فشردگی فیزیکی زودرس، دولومیتی شدن و نهشت سیمان کلسیتی در این بخش بسیار مشهودتر از سایر بخشهاست. تخلخل بیشتر از نوع قالبی، قالبی توسعه یافته و حفره ای است. در این بخش، میکروفاسیس۶ (پلوئید گرینستون) دارای تخلخل بین دانه ای بوده و بهترین ویژگی مخزنی را دارا می باشد؛ در حالیکه دیگر میکروفاسیس های مستعد، کاملا سیمانی شده و تخلخل آنها به شدت کاهش یافته است.

ایلام میانی:

این بخش حدود یک دوم از ضخامت کل سازند را به خود اختصاص داده و ضخیم ترین بخش سازند ایلام را تشکیل میدهد و در گزارشات از آن با نام "ایلام اصلی" (Main Ilam) یاد شده است. ایلام میانی شامل آهکهایی است که در محیطی نسبتاً عمیق با انرژی کم تا متوسط نهشته شده اند. میکروفاسیس الیگوستجینید (موجودات تک حجرهای پلانکتون)، زون ۲۶، همراه با زون ۳۰ وایند (1965 Wynl) در این بخش گسترش یافته است. این بخش با برخورداری از فراوانی میزان رس در محدوده ۶ الی ۱۲ درصد و مقدار میانگین ۱۰ درصد، تمیزترین قسمت از سازند ایلام را تشکیل می دهد. همچنین توزیع

۱۵ درصد است. (شکل ۳). بیشترین ضخامت این بخش مربوط به میکروفاسیس ۷ (میکروفاسیس الیگوستجینید همراه با روتالیا و بیوکلاست) می باشد؛ هرچند در قسمت فوقانی و قاعدهای این بخش، میکروفاسیس ۹، مادستون – وکستون دارای الیگوستجینید و هدبرگلا (از روزنبران پلانکتون) نیز دیده می شود. میکروفاسیس ۱۰، پکستون پلوئیدی، فقط در ضخامت ناچیزی ظاهر می شود.

دولومیتی شدن در این بخش به ویژه در قسمت قاعدهای این بخش غالبا به صورت بلورهای رومبوئدری پراکنده مشاهده می شود. همچنین پیریتی شدن در این میکروفاسیس معمول بوده و در اکثر مواقع پر کننده منافذ ریز میکروفسیلها می باشد. تخلخل در این بخش بیشتر از نوع قالبی، قالبی توسعه یافته، درون فسیلی، حفره ای و ندرتاً شکستگی است. علی رغم تخلخل قابل توجه، به دلیل عدم ارتباط منافذ، تراوایی و در نتیجه میزان تولید این بخش رضایت بخش نیست. مگر اینکه در مواردی شکستگیها سبب بهبود تراوایی گردند که تشخیص زونهای دارای شکستگی به کمک نمودارهای تصویری همچون FMI میسر است.

ايلام پايينى:

این بخش با ضخامت حدود یک پنجم از ضخامت کل سازند شامل آهکهایی است که در محیطی بسیار کم انرژی و آرام رسوبگذاری شده اند. محتوی رس این بخش اندکی بیشتر از ایلام میانی است. میزان رس در محدوده ۸ الی ۲۲ درصد در تغییر بوده و میانگین آن ۱۴ درصد می باشد. مقدار تخلخل تصحیح شده در محدوده ۴ الی ۱۳ درصد در تغییر بوده و مقدار میانگین آن ۷ درصد می باشد. شکل ۳ هیستوگرامهای توزیع میزان رس و تخلخل تصحیح شده را نمایش می دهد. میکروفاسیس ۹، با فراوانی کم الیگوستجینید و بافت غالباً مادستونی منطبق بر این بخش است. دولومیتی شدن و پیریتی شدن فرایندهای دیاژنتیکی غالب می باشند. تخلخل قابل روئیت بسیار کم و محدود به قالبهای فسیلی است.

نتايج آزمايشات مغزه:

در این تحقیق از نتایج تخلخل – تراوایی ۸۵ نمونه و نتایج آزمایشات تزریق جیوه انجام شده بر روی ۲۴ نمونه در میدان مورد مطالعه استفاده گردید. تخلخل به روش تزریق گاز هلیم (Helium Porosity) و تراوایی نسبت به هوا (Air Permeability) اندازه گیری شده است. تخلخل – تراوایی:

از نمونه های مورد استفاده، ۳۳ نمونه مربوط به ایلام بالایی، ۴۸ نمونه مربوط به ایلام میانی و ۴ نمونه مربوط به ایلام پایینی است. میزان تخلخل در نمونه های ایلام بالایی از ۱/۶۶ درصد تا ۲۴/۸۹ درصد در تغییر بوده و مقدار میانگین آن ۸/۹۸ درصد می باشد. تراوایی نمونه ها

از ۱۰/۰۱ تا ۲۲/۲ میلی دارسی در تغییر بوده و مقدار میانگین آن ۲۰/۰ میلی دارسی است. در نمونههای مربوط به ایلام میانی، تخلخل از ۴/۸۵ درصد تا ۲۲/۳ درصد در تغییر بوده مقدار میانگین آن ۱۴/۸۷ درصد است. تراوایی از ۱۰/۰ میلی دارسی تا ۳۷/۳۷ میلی دارسی در تغییر بوده و مقدار میانگین آن ۱/۷۹ میلی دارسی می باشد. در نمونه های مربوط به ایلام زیرین تخلخل از ۶/۳۶ درصد تا ۱۶/۷ درصد در تغییر بوده و مقدار میانگین آن ۱۰/۸۲ درصد است. تراوایی از ۱۹۰/۰میلی دارسی تا ۲۴/۰ میلی دارسی در تغییر بوده مقدار میانگین آن ۱/۱

همانطور که از دیاگرام متقابل تخلخل در مقابل تراوایی نیز (شکل ۴) استفاده می شود، اگر چه اکثریت نمونه ها تخلخل بیش از ۱۰ درصد دارند، تراوایی در بیشتر مواردکمتر از ۳ میلی دارسی است.

جدول ۱: داده های مربوط به تخلخل – تراوایی حاصل از آنالیز مغزه.

Interval	Number of samples	Cor	re porositj	v (%)	Core permeability (mD)					
	·····	Min	Max	Avg	Min	Max	Avg			
U.Ilam	33	1.66	24.89	8.98	0.01	0.26	0.07			
M.Ilam	48	4.85	22.3	14.87	0.01	37.37	1.79			
L.Ilam	4	6.36	16.7	10.82	0.098	0.24	0.15			

آزمایشات تزریق جیوه:

اَزمایش تزریق جیوه به نوعی شرایط ذخیره شدن هیدرو کربور در سنگ مخزن را بازسازی می نماید. در این روش جیوه به عنوان یک فاز غیر ترکننده با اعمال فشار وارد منافذ نمونه شده و جایگزین آب موجود در منافذ می گردد. این پدیده شبیه جایگزینی هیدروکربور در منافذ سنگ مخرن اشباع از آب شور است که در اثر نیروی بویانسی و یا هیدرواستاتیک صورت می گیرد. از تعداد ۲۴ نمونه مورد استفاده، ۸ نمونه مربوط به ايلام بالايي، ١٢ نمونه مربوط به ايلام مياني و ۴ نمونه مربوط به ایلام پایینی است که میکروفاسیس مربوط به هر نمونه در جدول ۲ درج شده است. هر چند محدوده فشاری (۰ الی ۱۰۰۰ پام) در آزمایشات بسیار کمتر از فشار مخزن است، در عین حال نتایج این آزمایشات تا حدود زیادی می تواند تجسمی از چگونگی توزیع گلوگاههای منافذ و سیستم تخلخل فراهم نماید. دیاگرامهای متقابل شکل ۵ میزان کاهش اشباع آب را با افزایش فشار و ورود جیوه به منافذ برای سه بخش سازند ایلام نمایش می دهد. در نمونه های مربوط به ایلام بالایی بزرگترین اندازه گلوگاههای منافذ مربوط به نمونه ۵ (میکروفاسیس۶) می باشد که در فشار ۱۰۰۰ پام حدود ۹۰ درصد حجم منافذ با جیوه اشباع شده است، در نتیجه بهترین ویژگی مخزنی را دارا می باشد. نمونه های ۳ و ۸ دربر گیرنده کوچکترین اندازه گلوگاههای تخلخل بوده بطوریکه در فشار ۱۰۰۰ پام ۲۰ الی ۲۵ درصد از حجم منافذ با جيوه اشباع شده است. نمونه هاى مربوط به ايلام میانی از لحاظ وضعیت مخزنی طیف گستردهای دارند. به عنوان مثال نمونه ۹ وضعیت نامطلوب مخزنی و نمونه ۱۰ ویژگی مخزنی نسبتا خوبي دارد. رويهمرفته اكثريت نمونه ها وضعيت مخزني چندان مناسبی ندارند. درنمونه های ایلام پایینی (نمونه های ۲۱ الی ۲۴) با افزایش فشار، حجم کمی از جیوه وارد منافذ شده که بیانگر ریز بودن گلوگاهها و معابر سیستم تخلخل است. بنابراین، این نمونه ها ویژگی های مخزنی بسیار نامطلوبی دارند.

نمودار انحراف سرعت:

نمودار صوتی از تخلخلهای حفره ای غیر مرتبط و شکستگیها چشم

پوشی نموده و فقط تخلخلهای بین دانه ای را ثبت می نماید، در حالیکه نمودارهای نوترون و چگالی بیانگر تخلخل کل می باشند (Schlumberger 1972). بر این اساس پارامتر شاخص تخلخل ثانویه (Secondary Porosity Index) اینگونه تعریف گردید:

 $SPI = \phi - \phi_{sonic}$

با توجه به این ویژگی نمودار صوتی، برای نخستین بار نمودار انحراف سرعت توسط Anselmetti و همکاران (۱۹۹۹) به عنوان تفاضل سرعت حاصله از نمودار صوتی با سرعت حاصله از نمودارهای نوترون یا چگالی تعریف شده و ابزاری جهت تشخیص نوع تخلخل، روندهای تاثیر فرایندهای دیاژنزی و تراوایی بکارگرفته شد. تخلخلهای مرتبط به هم دارای انحراف صفر، تخلخلهای قالبی و حفرات غیر مرتبط که در یک زمینه سخت و متراکم سیمانی احاطه شده اند انحراف مثبت نشان می دهند. در حالت ایده آل و تئوری کمترین مقدار انحراف سرعت باید

جدول ۲: میکروفاسیس های مربوط به نمونه های مورد آزمایش تزریق جیوه.

U. Ilam							M.llam											L.llam						
Sample	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15	S16	S17	S18	S19	S20	S21	S22	S23	S24
Facies	F7	F2	F4	F4	F6	F2	F8	F7	F8	F7	F9	F7	F9	F9	F9	F9	F9							

شکل ۵: دیاگرامهای متقابل اشباع آب (اشباع جیوه) در مقابل فشار.

حدود صفر باشد و مقادیر منفی بی مفهوم خواهد بود، اما گاهی به دلیل نامطلوب بودن وضعیت دیواره چاه (ریختگی) و عدم قرائت صحيح نمودارها، وجود شكستگيها و گاز، مقادير منفى نيز مشاهده مى شود. با آگاهی از اینکه اکثر منافذ و تخلخلهای موجود در سازند ایلام از نوع قالبی و یا حفره ای غیر مرتبط می باشد، تصور بر این بود که نمودار انحراف سرعت نتایج قابل قبولی را فراهم نماید. با توجه به اینکه سازند ایلام کم و بیش تحت تاثیر فرایند دولومیتی شدن قرار گرفته است ونوع خمیره (ماتریکس) سنگ تاثیر زیادی در سرعت انتقال صوت دارد، از دیاگرام متقابل نمودار نوترون در مقابل چگالی (چارت شلمبرژر) برای تخمین لیتولوژی استفاده شد (شکل ۶). همانطور که از پلات استفاده می شود، لیتولوژی سازند ایلام عمدتاً آهک است که در بخشهایی اندکی دولومیتی شده است. بر این اساس ماتریکس شامل ۲۰ درصد دولومیت و ۸۰ درصد آهک فرض شده و زمان عبور صوت از زمینه سنگ (Dtma) ۸ میکرو ثانیه بر فوت محاسبه شد. .همچنین زمان عبور صوت در سیال ۱۸۹ میکروثانیه بر فوت انتخاب گردید. به منظور محاسبه سرعت با استفاده ازتخلخل نمودارهای نوترون و چگالی، از رابطه وایلی استفاده گردید. شکل ۷ نمودار انحراف سرعت را نشان می دهد. در بخش بالایی ایلام غالباً انحراف منفی است. در بخش میانی انحراف مثبت که به تدریج به سمت قاعده از مقدار آن کم می شود. میزان انحراف بخش زیرین کم بوده و رویهمرفته منفی است. با توجه به نوع تخلخل سازند ایلام که عمدتاً قالبی و یا حفرات غیر مرتبط (به دلیل تراوایی ناچیز نمونه ها) است، انتظار بر این بود که در

غالب موارد میزان انحراف در حد قابل توجهی مثبت باشد. هر چند میزان انحراف در قسمت فوقانی بخش میانی مثبت است اما با توجه به وضعیت نامطلوب انحراف صوتی در سایر بخشها، این نمودار چندان قابل اطمینان نبوده و در مجموع نمودار انحراف سرعت صوت برای تشخیص نوع تخلخل در سازند ایلام کاربردی نیست.

بحث:

همانطور که در شکل ۲ نیز مشاهده می شود، در بخش بالایی ایلام تنوع میکروفاسیس ها بیشتر و میکروفاسیس ها غالبا از نوع دانه پشتیبان (Grain Supported) می باشند که در محیط پر انرژی و کم عمق نهشته شده اند. عملکرد فرایندهای دیاژنتیکی مخرب تخلخل، در این قسمت بیشتر از سایر بخشهاست. علی رغم وجود میکروفاسیس های پر انرژی اائیدی، پلوئیدی که مستعد ویژگی مخزنی مناسب می باشند در بیشتر موارد به دلیل عملکرد فرایندهای دیاژنزی مخرب نظخل، کیفیت مخانی به شدت کاهش یافته است که بعنوان مثال از فشردگی فیزیکی اولیه قبل از سیمانی شدن در میکروفاسیس۲ و سیمانی شدن گسترده در میکروفاسیس های ۴، ۵ و ۸ می توان نام بیانگر وجود گلوگاههای باریک سیستم تخلخل و کیفیت نامطلوب بیانگر وجود گلوگاههای باریک سیستم تخلخل و کیفیت نامطلوب مخزنی است (شکل ۵). بنابر این نقش فرایندهای دیاژنزی خصوصا سیمانی شدن در تخریب ویژگی مخزنی بسیار بارز است؛ بطوریکه میکروفاسیسهای دانه افزون که مستعد دارا بودن ویژگی مخزنی

شکل ۷: نمودار انحراف سرعت در سازند ایلام.

مناسب می باشند در غالب موارد شدیدا سیمانی شده و ویژگی مخزنی بسیار ضعیفی دارند. اگر چه تخلخل در تمام بخشهای سازند ایلام عموما از نوع قالبی، قالبی توسعه یافته و حفره ای است اما در بخش بالایی قالبها بزرگتر و مربوط به انحلال بیوکلاستهای نسبتا درشت تر اکینوئید، دوکفه ای و جلبک می باشد. همچنین در مواردی فضای بین دانه ای در برخی از میکروفاسیس ها (میکروفاسیس ۶) از عملکرد سیمانی شدن مصون مانده و تخلخل بین دانه ای بخوبی حفظ شده است. منحنی تزریق جیوه مربوط به نمونه ۵ با ویژگی مخزنی بسیار مناسب گواه این ادعاست (شکل ۵). هر چند این میکروفاسیس ضخامت چندانی ندارد اما بهترین زون تولیدی این بخش محسوب می شود. بخش میانی (Main Ilam) که بیشترین ضخامت سازند ایلام را نیز به خود اختصاص داده است عمدتاً در برگیرنده میکروفاسیس های ۷، ۸، ۹ و ۱۰ می باشد که در این میان میکروفاسیس های ۷ و ۹ بيشترين ضخامت را دارند. اين ميكروفاسيس ها با بافت مادستون -وکستون و ندرتاً پکستون حاوی میکروفسیلهای پلانکتون الیگوستجینید و هدبرگلا (از روزنبران) است که حاکی از رسوب آن در شرایط آرام و کم انرژی بخشهای نسبتاً عمیق حوضه می باشد. علی رغم تخلخل بسيار خوب اين بخش (ميانگين ١٥٪) با توجه به اينكه غالبا تخلخلها ريز و مربوط به قالبهای انحلالی درون پوسته الیگوستجینید و هدبرگلا است که فاقد جهت یافتگی خاصی می باشند، تراوایی بسیار ناچیز و کیفیت مخزنی ضعیف است. وجود شکستگیها بطور موضعی می تواند تراوایی و در نتیجه میزان تولید را

بهبود بخشد. اگر چه گاهی تخلخلهای قالبی و قالبی توسعه یافته فراوانند اما این مقدار تخلخل قابل رویت، قابل مقایسه با تخلخل ثبت شده توسط نمودارهای نوترون و چگالی نیست و به احتمال زیاد بخشی از تخلخل ثبت شده مربوط به ریزتخلخلهای ماتریکس است؛ بطوریکه در غالب موارد ماتریکس کاملا آغشته به هیدروکربور است. نظر به اینکه ریز تخلخلها عملاً در بهبود تراوایی نقش موثری ایفا نمی کنند دیاگرام متقابل شکل ۴ نیز می تواند موید همین مطلب باشد. با توجه به اینکه تراوایی بسیار ناچیز (غالباً کمتر از ۳ میلی دارسی) و در نتیجه شعاع زهکشی هیدروکربور کم است، بنظر می رسد بهترین استراتژی برداشت افزایش سطح تماس چاه با زون متخلخل است که از طریق

مرز بخش میانی و پایینی با یک تغییر واضح پتروفیزیکی همراه است؛ بطوریکه در این مرز میزان تخلخل بطور ناگهانی کاهش می یابد. همچنین مقاومت عمیق (Rt) نیز بطور ناگهانی کاهش یافته که بیانگر افزایش ناگهانی میزان اشباع آب است. (شکل ۲). اگر چه از لحاظ میکروفاسیس ای بخش قاعده ای ایلام میانی و پایینی در قالب یک میکروفاسیس معرفی شده است، میکروفاسیس ۹ با بافت وکستون -مادستون با اندکی تغییر در ایلام پایینی به بافت مادستون و ندرتاً وکستون با محتوی رس بیشتر (شکل ۳) که در محیطی به مراتب آرامتر و کم انرزی تر نهشته شده اند، تبدیل شده است. تخلخل قابل رویت در این بخش بسیار اندک و از نوع قالبی است. با توجه به نمودارهای تزریق جیوه برای نمونه های ۲۱، ۲۲، ۲۳ و ۲۴ دیاگرام متقابل شکل ۵، گلوگاههای سیستم تخلخل بسیار باریک و تراوایی بسیار ناچیز است. با توجه به وجود گلوگاههای بسیار باریک مرتبط كننده منافذ و وضعيت تغيير ناگهاني ميزان اشباع آب (كاهش مقاومت) در مرز بخش میانی و پایینی بسیار بعید بنظر می رسد که مهاجرت هيدرو كربور بطور عمودي و از طريق اين بخش صورت گرفته باشد و احتمال شارژ جانبی مخزن ایلام را قوت می بخشد.

نتيجه گيري:

در این مطالعه که بر اساس تلفیقی از مشاهدات پتروگرافی، نمودار های پتروفیزیکی و نتایج آزمایشات مغزه انجام شد نتایج ذیل حاصل گردید: - میکروفاسیس های مربوط به بخش بالایی ایلام بیشتر از نوع دانه پشتیبان، اائیدی- پلوئیدی بوده که در بیشتر موارد بطور گسترده سیمانی شده اند؛ هر چند در موارد معدودی این میکروفاسیس ها تحت تاثیر فرایندهای سیمانی شدن واقع نشده و تخلخل بین دانه ای مناسب و در نتیجه ویژگی مخزنی بسیار مناسبی دارند. بنابراین در بخش بالایی سازند ایلام، ویژگی مخزنی بشتر توسط فرایندهای ن قابل توجه، بخش میانی تراوایی مناسبی ندارد. تنها استراتژی فعلی و موفق جهت برداشت می تواند افزایش سطح تماس چاه با زون ر متخلخل باشد که از طریق حفاریهای جهت دار و افقی امکان پذیر است. - افزایش ناگهانی اشباع آب در مرز بخش میانی و پایینی به دلیل به تغییرات میکروفاسیس ای، محتوی رس بیشتر و کاهش تخلخل در بخش پایینی ایلام است. این عوامل سبب ایجاد سیستم تخلخل با معابر و گلوگاههای باریک شده است بطوریکه احتمال عبور هیدروکربور م از این بخش و در نتیجه شارژ عمودی مخزن ایلام را تضعیف می نماید.

دیاژنزی کنترل می شود تا اینکه محیط رسوبی موثر باشد. همچنین شدت فرایندهای دیاژنتیکی از جمله فشردگی فیزیکی زودرس و نهشت سیمان کلسیتی در بخش بالایی به مراتب بیشتر از سایر بخشهاست. - با توجه به مقایسه تخلخل قابل رویت در مقاطع نازک و میزان تخلخل نمودارهای نوترون و چگالی و مشاهده آغشتگی ماتریکس به هیدروکربور به احتمال قوی بخشی از تخلخل ایلام میانی ریز تخلخل است. - به دلیل وجود تخلخلهای قالبی و درون فسیلی با اندازه ریز و عدم

به دنین وجود تحتجتهای فاتبی و درون فسیتی با اندازه ریز و عدم
جهت یابی خاص این منافذ، و همچنین ریز تخلخلها، علیرغم تخلخل

منابع:

مطيعی ه. ۱۳۷۲: چینه شناسی زاگرس، سازمان زمین شناسی ایران، ۵۳۶ صفحه.

Anselmetti F.S., Eberli G.P. 1999: The velocity-Deviation log : A tool to predict pore type and permeability trends in carbonate drill holes from sonic and porosity or density logs : *AAPG Bulletin.* **83**: 450-466.

- Flugel E. 2004: Microfacies of Carbonate Rocks. Springer-Verlag Berlin Heidelberg. 976p.
- Tucker M.E., Wright P.V. 1990: Carbonate Sedimentology. Blackwell. Sci. Pub. London. 482 p.
- Wilson J.L. 1975: Carbonate Facies in Geologic History. Springer-Verlag, NewYork. 741 p.

Schlumberger 1972: Log interpretation volume 1-principles. 113p.

Shlumberger 1989: Log interpretation charts. 151p.

Wynd J.G. 1965: Biofacies of the Iranian oil consortium agreement area: N.I.O.C. report No.1082.