, , Azizi13454@gmail.com : (//://:)

وسیعی از اطراف سنندج، به خصوص شمال این شهرستان را سنگهای آتشفشانی و آذرآواری کرتاسه با ترکیب بازیک و حدواسط میسازند. مطالعات ژئوشیمیایی کالک آلکالن بودن ماگمای اولیه این سنگها را تایید میکند. آنومالی منفی Ti ،Nb و نیز غنی شدگی ازعناصر گروه LIL و LREE حاکی از این است که ماگمای مادر این سنگها از یک گوشته غنی شده (نسبت به گوشته مورب) در بالای یک زون فرورانش منشا گرفته است. همچنین نسبت پائین Ce/Pb و UN/D دراین سنگها درمقایسه با MORB و OIB نیز وابستگی این سنگها را با محیط های فرورانش یاد آوری می ماید.

.()

. .(

20 cm

).

(b) .

(

)

.cpx=

Pl =

.

(a)

(d,c)

:

.

AMDEL ICP XRF

Major(%)	D1	D11	D117	D12	D4	D7	Ms21	Ms22	Ms6	Ms20
SiO2	54.44	55.5	54.24	50.51	55.07	52.55	50.91	54.92	53.44	49.26
TiO2	0.79	0.70	0.74	0.56	1.02	0.83	0.82	0.81	0.73	0.78
Al2O3	14.22	14.61	14.23	11.88	15.09	15.49	16.62	14.15	14.41	15.48
Fe2O3	9.29	9.37	9.43	9.85	9.52	10.31	11.48	9.27	9.09	11.46
MnO	0.15	0.14	0.15	0.16	0.13	0.16	0.14	0.14	0.14	0.12
MgO	4.81	3.99	6.81	7.90	3.22	8.48	7.04	6.73	7.86	10.25
CaO	5.59	8.50	7.18	9.40	7.85	2.77	5.84	5.87	8.18	5.28
Na2O	2.88	1.53	2.22	1.26	4.30	2.36	3.69	2.65	1.33	0.92
K20	2.40	2.85	0.05	1.06	1.32	2.23	1.14	1.03	0.98	1.07
P2O5	0.12	0.14	0.18	0.14	0.21	0.19	0.19	0.21	0.15	0.14
LOI	2.96	2.24	4.40	7.02	2.29	4.47	3.77	3.60	3.22	5.05
Ba	447	572	28	574	232	442	6	501	373	434
Rb	52	53	8	25	24	35	28	28	25	29
Sr	452	951	318	367	231	188	380	379	410	408
Y	17	15	13	13	15	15	13	14	13	13
Zr	98	74	81	54	114	71	69	70	61	65
Nb	5	3	7	4	9	6	1	3	3	2
Th	2	2	2	6	1	2	4	7	3	2
Pb	7	3	13	8	10	7	6	3	10	12
Zn	83	70	82	69	73	82	76	85	70	76
Си	31	35	36	50	73	91	58	60	24	30
Ni	15	19	8	80	21	13	15	31	38	41
V	147	144	158	163	156	196	165	160	144	186
Cr	7	36	16	252	13	12	65	60	73	55
Со	23	23	22	33	5	29	20	26	18	32
U	1	1	1	4	1	2	1	5	2	1
La	12.00	18.60	15.00	15.50	16.30	22.70	15.90	15.20	14.90	12.90
Ce	24.60	36.80	32.20	30.60	33.70	46.30	32.10	31.40	29.30	32.10
Pr	3.79	5.53	4.93	4.52	5.19	0.07	5.07	4.82	4.43	4.55
Na Sw	15.90	22.60	19.90	18.20	20.60	28.30	20.60	19.30	18.82	18.30
SM E	3.47	4.40	3.82	3.08	4.29	5.70	3.93	3.80	3.07	3.80
EU	1.04	1.34	1.07	1.21	1.32	1.04	1.19	1.18	1.22	1.18
Ga	3.04	3.33	2.92	2.78	5.70	4.38	3.25	3.02	2.91	5.00
10	0.05	0.62	0.58	0.54	0.72	0.79	0.01	0.60	0.54	0.55
Dy H	4.05	5.87	5.75	5.07	4.60	4.05	5.09	5.07	5.41	5.41
Но	0.71	0.08	0.05	0.52	0.81	0.78	0.65	0.01	1.80	0.50
Er Tm	2.23	2.11	2.11	1.00	2.38	2.40 0.22	1.9/	1.90	1.89	1.//
1 M VI	0.32	0.29	1.02	0.25	0.30	0.33	1.02	0.20	1.27	0.23
10	2.20	2.11	1.92	1.01	2.48	2.13	1.93	1.80	1.82	1.00
LU M-#	0.29	0.29	0.20	0.22	0.34	0.30	0.24	0.24	0.27	0.20
Mg#	2 50	12.20	2 47	2 80	43.29	6.60	5 25	10.40	2 02	2.07
Ce/PD	5.00	2.00	2.47	3.60	3.37 0.00	2.00	3.33 1.00	10.40	2.95	2.07
IND/U	5.00	2.00	/.00	1.00	9.00	2.00	1.00	0.00	1.50	2.00

.**(b)**

.

d .(Sun & McDonough 1989)

b a

Ti Nb . LIL () . LIL () . LIL () . () . () . () . () . () (

(Stern *et al.* 1975)

Best M. 2003: Igneous and metamorphic Petrology.Blackwell Publishing. USA. 729p.

Cabanis B., Lecolle M. 1989: Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des series volcaniques et la mise en evidence des processor de mélange et/ ou de contamination crustale. *Competes Rendus*. **309:** 2023-2029.

Cox K.G., Bell J. D., Pankhrust R.J. 1979: The interpretation of igneous rocks. George, Allen and Unwin. London. 450p.

Hofmann A.W., Jochum K.P, Seufert M., White W.M. 1986: Nb and Pb in oceanic basalts: new constraints on mantle evolution. *Earth. Planet. Sci. Letters*. **79:** 33-45.

Irvine T.N., Baragar W.R.A. 1971: A guide to the chemical classification of the common volcanic rocks. *Canadian. Journal of Earth Sciences.* **8**: 523-548.

McDonough W.F., Sun S.S. 1995: Composition of the Earth. Chem. Geology. 120: 223-253.

McDonough W.F., Sun S.S., Ringwood A.E., Jagoutz E., Hofmann A.W. 1992: Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth. *Geochim. Cosmochim. Acta.* 56: 1001-1012.

Pearce J.A. 1983: The role of subcontinental lithosphere in magma genesis at destructive plate margins. In Continental basalts and mantle xenoliths, C.J. Hawksworth & M.J. Norry (eds.). 230-249.

Pearce J.A., Cann J.R. 1973: Tectonic setting of basic Volcanic rocks determined using trace elements analysis. *Earth and Planet. Sci.letters.* **19**: 290-300.

Stern C.R., Hung W., Wyllie P.L. 1975: Basalt andesite-rhyolite-H2O: crystallization intervals with excess H₂O and H₂Ounsaturated liquidus surfaces to 35 kilo bars. With implications for Magma genesis. *E. P. S. L.* **28**: 189-196.

Stocklin J. 1968: Structural history and tectonics of Iran. A review, AAPG Bulletin. 52: 1229-1258.

Stocklin J., Nabavi M.H. 1973: Tectonic map of Iran. Geology Survey of Iran.

- Sun S.S. 1980: Lead isotope study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Hilo. *Trans. R. Soc. London, Ser.* **297:** 409-445.
- Sun S.S., McDonough W.F. 1989: Chemical and isotopic systematic of oceanic basalts: implication for mantle composition and processes. In: Sunders A.D. and Norry M.J. (eds.) magmatic in oceanic basins. *Geol. Soc. London. Spec. Pub.* **42:** 313-345.

Rudnick R.L., Fountain D.M. 1995: Nature and composition of the continental crust: a lower crustal perspective. *Rev. Geophys.* **32:** 267-309.